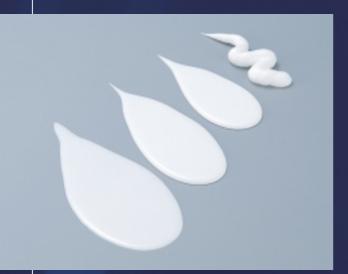


Shin-Etsu Silicone

For Electrical, Electronic and General Industrial Use

RTV Rubber



MEETING THE DEMANDS OF A VARIETY OF APPLICATIONS

Shin-Etsu Silicone's electrical, electronic and general industrial use RTV rubber, in liquid or paste form, has been developed primarily for the gluing, sealing, and potting of electrical and electronic equipment.

As electrical and electronic equipment becomes smaller, lighter, and more sophisticated, ever higher quality and performance is required of their structural components and materials. Shin-Etsu Silicone's high-performance RTV rubber products can meet a wide variety of needs, offering outstanding heat and low-temperature resistance, weather resistance, and electrical properties.

Our wide range of products contributes to increased reliability of electrical and electronic equipment and communications equipment.

RTV

RTV stands for Room Temperature Vulcanizing.

RTV rubber changes from a liquid state
to a solid (or elastic body) by a variety of curing methods.

Our lineup features Shin-Etsu's original products of different viscosities, with various distinctive properties.

You can choose products that meet the needs of your specific application.

\sim	ntents	
	Features of RTV Rubber Selection Guide	
	Performance Characteristics	
	■ Curing properties ······	6
	■ Adhesion ·····	
	■ Electrical properties ■ Heat resistance ······	10
	■ Weather resistance / Durability ·····	11
	■ Chemical resistance	
	■ Low-molecular-weight siloxane	13
	■ Various additives ·····	
	■ Primers	15
	Product Listing by Intended Use	16
	Product List	
	■ Sealing – General industrial purpose ······	18
	■ Sealing – General electrical purpose (one-component) ················· 18	.19
	■ Sealing – General electrical purpose (two-component) ······	
	■ Sealing – Reduced low-molecular-weight siloxane types ·····	20
	■ Potting (rubber) ·····	22
	■ Potting (gel) ·····	23
	■ Coating ■ Thermally conductive types ······	
	■ Foams ■ Oil- and solvent-resistant types (fluorosilicone) ····································	25
	■ Primers ■ Curing agents ·····	26
	■Diluents, additives, and coatings ■UL listing ······	27
	Packaging and Colors	
	■ One-component RTV rubber (room temperature curing types) ····································	28
	One-component RTV rubber (heat cure types) ······	
	■ One-component RTV rubber (heat cure types) ····································	29
	Directions for Usage	
	One common DTV without House	
	■ Two-component RTV rubber - Usage ···	30
	Handling Presentions	21

Features of RTV Rubber

1

Heat and cold resistance

Suitable for heat-resistant seals of heating devices such as microwave ovens.

They can be used at temperatures ranging from -50°C to +250°C. They remain flexible even when used continuously from -40°C to +180°C.

Shock resistance

For applications such as vibration insulation of optical pickups.

After curing, they absorb shock and vibration, which prevents damage to electrical and electronic components, glass, and other delicate objects.

Adhesion

Suitable for heat-dissipating seals of heat pipes.

They exhibit outstanding adhesive strength on numerous materials including metals, glass, and plastics. There are types available that suit a variety of different applications, substrates, and usage conditions. For certain substrates, the use of a primer is recommended.

Oil and chemical resistance

For sealing and potting of equipment and sensors for automotive use.

Resistance to chemicals and oils is far better than that of organic rubber. Products include gasoline-resistant and engine-oil-resistant formulations

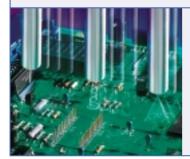
Electrical properties

For moisture-proof coating of electrodes and other applications.

Their ability to maintain stable electrical properties even through environmental changes such as temperature and humidity changes makes them ideal for insulation sealing applications in electrical and electronic equipment.

Weather resistance

For sealing equipment used outdoors.



With superior resistance to ultraviolet rays, ozone and water, these products can be exposed to outdoor conditions for long periods of time resulting in little if any deterioration.

Non-solvent formulations

For coating various substrates.

Non-solvent adhesives and coating agents are available. (There are also solvent types available.)

Waterproof and airtight

Suitable for sealing various household ceramics.

After curing these products exhibit outstanding waterproof and airtight performance. They are ideal for sealing electronic parts and equipment that are vulnerable to moisture, and for sealing in the bathroom, kitchen, or wherever water is used.

Types of curing reactions

Shown below are RTV rubbers of different reaction types, each with distinctive characteristics.

Curing reaction types and characteristics of RTV rubbers

Curing reaction	Characteristics	Generated gas	RTV classification	Handling classification
	The curing reaction begins upon exposure to atmospheric moisture.	Acetone	Acetone type	
Condensation reaction	Small quantities of gases are generated during curing.	Alcohol	Alcohol type	Room-temperature curing type
Condensation reaction		Oxime *2	Oxime neutral type	Noom-temperature curing type
	Shrinkage (weight): about 4%	Acetic acid	Acetic acid type	
Addition reaction	Heating will accelerate the curing process with almost no curing shrinkage.	None	Addition type	Heat curing type Room-temperature curing type
UV reaction *1	Cures rapidly through exposure to UV rays.	None	UV type	_

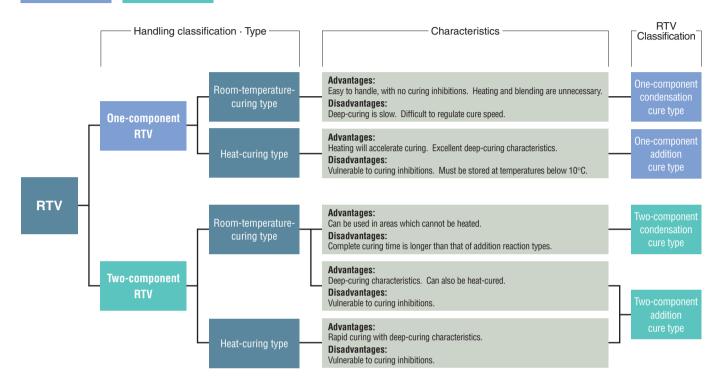
^{*1} UV cure products require detailed explanation, so please contact the nearest Shin-Etsu Sales Department directly.

^{*2} Oxime gas: MEKO (Methyl ethyl ketoxime)

Characteristics Reaction type	Cure speed	Anti- corrosiveness	Tack free	Storability	Hermetic heat resistance	Brief description
Acetone type	0	0	0	0	0	Non-corrosive and quick-drying, with excellent hermetic heat resistance.
Alcohol type	0	0	0	Δ	×	Low corrosiveness and low odor with excellent stress crack characteristics.
Oxime neutral type	0	Δ	0	0	Δ	Oxime generated during curing is corrosive to copper.
Acetic acid type	0	×	0	0	Δ	Strong odor and metal corrosion due to generated acetic acid gas during curing.
Addition type (one-component)	0	0	_	Δ	_	Rapid curing and strong adhesion.
Addition type (two-component)	0	0	_	0	_	Both heat-curing and room-temperature-curing types are available.

- $\bullet \ \text{Hermetic heat resistance: the heat resistant stability of the uncured product when stored hermetically. }$
- Stress cracks: cracks which occur when plastic or other materials under strain come in contact with adhesives containing solvents, etc.
- \bigcirc : excellent \bigcirc : good \triangle : fair \times : poor : n/a

Viscosity (flowability, workability) Viscosity classification: classified according to the standards shown below. Products may be suitable for applications other than those listed.


To see the appearance, please refer to the photos on page 2.

Up to 25 Pa⋅s	Low viscosity	Coating
25-50 Pa·s	Medium viscosity	Potting, sealing
50-100 Pa·s	High viscosity	Sealing
Over 100 Pa·s	Paste	Sealing

^{*} Data regarding the viscosity of individual products are not specification values.

One-component type

Two-component type RTV rubbers each have their respective workability and storability characteristics, and are divided into one-component and two-component types.

Parameter	One-comp	onent type	Two-component type		
Faiailletei	Room-temperature-curing type	Heat-curing type	Room-temperature-curing type	Heat-curing type	
Blending	Unnecessary Unnecessary		Required	Required	
Deaeration*1	Unnecessary	Unnecessary	Required	Required	
Deep-curing	Inferior	Excellent	Excellent*2	Excellent	
Cure speed regulation	Impossible	Impossible	Possible	Possible	
Accelerated curing	Impossible	Heating	Impossible	Heating	
Storability	Airtight, room-temperature storage.	Refrigeration required	Room-temperature storage.	Room-temperature storage.	

^{*1} Deaeration: the process of allowing a substance to stand, or degassing to remove interfused air bubbles that may degrade dielectric properties.

Comparison with other resins

General properties of silicone rubber (comparison)

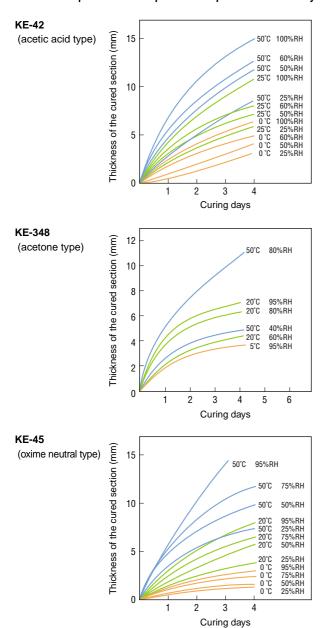
[Linear coefficient of thermal expansion / Tensile modulus of elasticity]

	Linear expansion co	efficient	Tensile modulu	s of elasticity
Silicone	2-4 x 10 ⁻⁴	/°C	0.01-20	N/mm ²
Ероху	5-8 x 10 ⁻⁵	/°C	2000-5000	N/mm ²
Polyurethane	10-20 x 10 ⁻⁵	/°C	70-3000	N/mm ²
Acrylic	10-20 x 10 ⁻⁵	/°C		N/mm ²

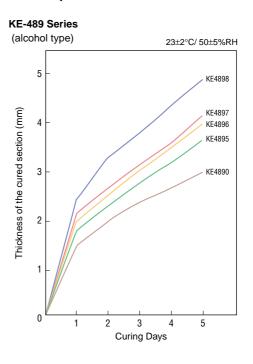
(Room temperature: 23°C)

^{*2} Please refer to the handling precautions on page 31.

■ Curing properties

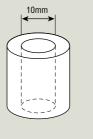


The required curing time for room-temperature-curing types is dependent on the thickness of the rubber, the air temperature, and the relative humidity. Curing begins on the surface, so as the thickness increases, the curing time required for the inner portion increases accordingly. Generally, cure speed will accelerate as temperature and humidity rise. At 23°C / 50%RH*, surface curing normally begins after 1 to 60 minutes – a 2 mm sample will become a fully elastic body in about 24 hours. Please note that 3 days are required to achieve full mechanical strength, and about 7 days are required for the product to exhibit certain characteristics including electrical and adhesion properties.


* RH is the abbreviation for Relative Humidity.

It is 100 times the value of the water vapor actually contained in the air divided by the saturated water vapor at that air temperature.

■ Relationship between cure speed and temperature and humidity



■ Cure speed

Measuring cure speed

To measure the relationship between rubber thickness and cure time, a polyethylene container is filled with RTV rubber. The inside diameter of the container is 10 mm. The cure time will vary as the thickness of the cured part, temperature and humidity change.

^{*} The data shown is that of typical products. Related products will exhibit similar tendencies.

General one-component addition cure products will cure in 30 minutes to 1 hour when heated to between 100°C and 150°C. They exhibit excellent deep-cure properties and cure uniformly, regardless of thickness. However, curing may be slower in spots where heat is not easily transmitted.

As the following chart shows, physical properties are achieved by heating to 100°C for 1 hour, but some products will not cure even after an hour if not heated to above 80°C.

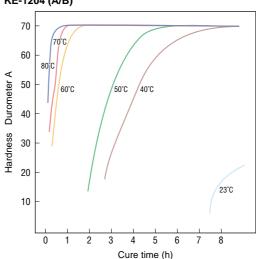
Note: some products will cure at 80°C but will not possess adhesive strength.

■ Curing conditions and physical properties

KE-1820

Heating temperatur	e °C	80	100		120		150
Parameter Heating time	h	1	1	1	2	3	1
Hardness Durometer A			37	40	41	41	45
Elongation at break	%	cure	690	650	660	670	550
Tensile strength	MPa	s not	5.8	5.4	5.5	5.7	5.1
PBT Adhesive shear strength	MPa	Does	1.6	2.0	2.0	2.3	2.0
PBT cohesion break rate	%		100	100	100	100	100

Testing method: complies with JIS K 6249. (Not specified values)


Curing occurs after 5 minutes to 1 hour when heated to temperatures up to 150°C. The higher the curing temperature, the shorter the cure time. Please note that changing the amount of curing agent will not greatly affect cure speed.

■ Relationship between temperature and cure time KE-1204 (A/B)

Temperature °C	Cure time
25	24~48 h
50	5~6 h
60	1.5~2 h
80	1 h
100	10~15 min
120	5~10 min
150	5 min

■ Temperature's effect on cure state

KE-1204 (A/B)

Curing inhibition

When addition cure RTV rubber comes in contact with sulfur, phosphorous, nitrogen compounds and substances containing organometallic salts (such as amine-based epoxy curing agents, urethane isocyanates, sulfur vulcanized rubber and soldering flux) defective curing may occur at the point of contact. Please refer to the information about additives on page 14.

■ Adhesion

With the exception of special materials such as polyolefin-based resins and fluororesins, condensation cure products exhibit superior adhesion to most materials.

■ Adhesion to various materials

KE-348 (acetone type)

Adherend		Adhesion
	Aluminum	0
	Stainless steel	Δ
	Iron	
Metal	Chrome	0
	Copper	0
	Melamine-coated board	0
	Vinyl-coated steel plate	0
	Glass	0
Stone	Mortar	×
Stolle	Tile face	0
	Tile back	
	Phenol	0
	PVC (hard)	0
Plastic	PVC (soft)	0
Plastic	Ероху	0
	Acrylic	×
	FRP	Δ
Rubber	Neoprene	×
nubbei	Butyl rubber	×
Wood	Cedar	0

 $\bigcirc \colon \mathsf{most} \ \mathsf{suitable} \ \bigcirc \colon \mathsf{suitable} \ \triangle \colon \mathsf{will} \ \mathsf{adhere}, \ \mathsf{but} \ \mathsf{caution} \ \mathsf{required} \ \ \mathop{\textstyle \times} \colon \mathsf{not} \ \mathsf{suitable}$

KE-489 Series (alcohol type)

unit: MPa

Grade Adherend	KE-4898	KE-4897	KE-4896	KE-4895	KE-4890
Aluminum	1.0	0.7	0.6	0.4	1.3
Stainless steel	0.7	0.5	0.4	0.2	1.2
Copper	0.8	0.5	0.4	0.3	1.4
Glass	1.0	0.6	0.5	0.4	1.3
Polycarbonate	0.7	0.5	0.3	0.2	0.3
ABS	0.8	0.5	0.3	0.2	1.4
Noryl	0.8	0.5	0.4	0.2	1.4
Ероху	0.8	0.5	0.3	0.2	1.5
PBT	0.7	0.5	0.4	0.2	1.2
Acrylic	0.8	0.5	0.3	0.2	0.4

Curing conditions: 23±2°C / 50±5% RH for 7 days, measured in compliance with JIS K 6249.

Tensile speed: 50 mm/min

(Not specified values)

■Change in adhesive strength over time

KE-3475 / KE-347 / KE-348 (acetone type)

As shown in the graph, the adhesive strength increases as curing progresses. Although it varies depending on the thickness of the rubber, a cure time of at least 7 days is usually required to reach full adhesive strength.

Testing method: complies with JIS K 6249.

■ Lap shear strength with various materials

KE-3427/KE-3428 (acetone type)

	Lap shear strength MPa (cohesion break rate %)							
Adherend	KE-3427	KE-3428						
Glass	0.7 (100)	1.4 (100)						
Aluminum	0.4 (100)	1.3 (100)						
SUS	0.4 (100)	1.3 (100)						
Copper	0.4 (100)	1.1 (100)						
Iron	0.4 (100)	1.1 (100)						
Brass	0.4 (100)	0.9 (100)						
Acrylic	0.4 (100)	0.9 (70)						
ABS	0.4 (100)	0.9 (100)						
Ероху	0.3 (100)	1.2 (100)						
Nylon 6	0.3 (100)	1.1 (100)						
Nylon66	0.3 (100)	1.1 (100)						
Noryl	0.5 (100)	1.0 (100)						
PVC (hard)	0.4 (100)	1.0 (100)						
Polyester	0.4 (100)	0.9 (100)						
PBT	0.4 (100)	1.1 (100)						
Bakelite	0.4 (100)	1.1 (100)						
Polystyrol	0.4 (100)	1.3 (100)						
PPS	0.4 (100)	_						
SPS	0.5 (100)	1.1 (100)						

KE-200 (two-component acetone type)

Adherend	Lap shear strength MPa	Cohesion break rate %
Epoxy	0.27	100
Polyester	0.32	100
PBT	0.16	0
PVC	0.25	100
Acrylic	0.14	0
Polycarbonate	0.30	100
Phenol	0.26	100
Nylon 66	0.27	100
Nylon 6	0.27	100
Iron	0.30	100
Copper	0.30	100
Stainless steel	0.28	100

Curing conditions: 23±2°C / 50±5% RH for 3 days. Testing method: complies with JIS K 6249.

 $\ensuremath{\bigstar}$ Cohesion break: a condition in which the materials do not separate at the surface, but break in the materials themselves, or in which all material is left on the surface.

(Not specified values)

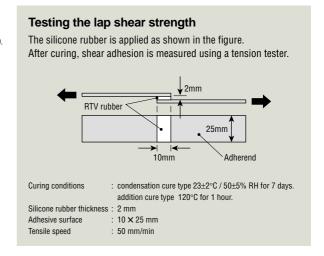
cure type

Addition cure products exhibit superior adhesion to epoxy (non-amine-based) and aluminum. There are also products available that adhere to engineering plastics such as PBT and PPS.

■ Lap shear strength with various materials

(one-component type)

Adherend	Lap shear strength MPa (cohesion break rate %)						
Adherend	KE-1820	KE-1830	FE-61				
Glass	2.7 (100)	2.5 (100)	0.90 (100)				
Aluminum	2.5 (100)	2.5 (100)	0.90 (100)				
Stainless steel	2.1 (100)	2.5 (100)	1.0 (100)				
Nickel	2.1 (100)	2.0 (100)	0.90 (100)				
Chrome	2.5 (100)	2.3 (100)	0.90 (100)				
Copper	2.1 (100)	1.9 (100)	0.90 (100)				
Ероху	2.0 (100)	1.8 (100)	0.90 (100)				
Polycarbonate	0.50 (0)	0.79 (0)	0.73 (50)				
PBT	2.0 (100)	2.5 (100)	0.90 (100)				


Testing method: complies with JIS K 6249.

(Not specified values)

KE-1802 (A/B/C) (three-component type)

(L-1002 (A/B/O) (L	nee-component type)	
Adherend	Lap shear strength MPa	* will also adhere to materials including glass, ceramics, and film.
Ероху	2.3	Testing method: complies with JIS K
Unsaturated polyester	2.3	
Phenol	2.0	
Noryl	1.8	
PBT	2.1	
Polycarbonate	1.8	
Aluminum	1.8	
Copper	1.7	
Stainless steel	2.3	
Mild steel	2.0	
Chrome	2.0	
Nickel	1.6	

esting method: complies with JIS K 6249.

■ Electrical properties

Condensation cure type (one-component type)

KE-489 Series (alcohol type)

Parameter	Conditions	Initial: 25°C	100°C/200h	200°C/200h	100°C/500h	200°C/500h
	Volume resistivity $T\Omega \cdot m$	30	30	30	40	50
KE-4898	Dielectric breakdown strength (1 mm) kV	25	25	25	25	25
KE-4090	Dielectric constant 50Hz	2.8	2.8	2.7	2.8	2.7
	Dissipation factor 50Hz	2×10 ⁻³				
	Volume resistivity $T\Omega \cdot m$	50	50	20	20	20
KE-4896	Dielectric breakdown strength (1 mm) kV	24	24	24	24	24
KE-4090	Dielectric constant 50Hz	2.8	2.8	2.7	2.7	2.7
	Dissipation factor 50Hz	1×10 ⁻³	1×10 ⁻³	2×10 ⁻³	3×10 ⁻³	1×10 ⁻³
	Volume resistivity $T\Omega \cdot m$	6	30	30	20	20
KE-4890	Dielectric breakdown strength (1 mm) kV	25	25	24	25	23
NE-4090	Dielectric constant 50Hz	3.4	3.3	3.4	3.3	3.4
	Dissipation factor 50Hz	1×10 ⁻³				

Testing method: complies with JIS K 6249. Curing conditions: 23 \pm 2°C / 50 \pm 5% RH for 7 days.

(Not specified values)

Addition cure type (two-component typ

KE-1204 (A/B)

Parameter Conditions		Initial	150°C/500h	200°C/500h	250°C/500h
Volume resistivity $T\Omega$ ·cm		2	0.1	2	0.1
Dielectric breakdown strength (1 mm) kV		27	27	28	29
Dielectric constant	50Hz	3.3	3.3	3.3	3.2
Dielectric constant	1MHz	3.3	3.2	3.2	3.1
Dissipation factor	50Hz	2×10 ⁻³	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³
	1MHz	1×10 ⁻⁴	1×10 ⁻⁴	1×10 ⁻⁴	1×10 ⁻⁴

Testing method: complies with JIS K 6249.

(Not specified values)

Conditions used to produce the test specimen: 100°C for 30 min.

■ Heat resistance

Condensation cure type one-component type

KE-3417 (heat-resistant, acetone type)

	Deterioration (day count)	Hardness (Durometer A)	Elongati	on %	Tensile strength	MPa
Hart maintage	Initial	35	200		1.4	
Heat resistance Physical properties of rubber (300°C)	7days	7days 30 240		10	1.2	
Triysical properties of rubber (500-6)	14days	40	15	50	1.1	
	30days	52 100		00	0.9	
	Deterioration (day count)	Glass			Aluminum	
Heat resistance	Initial	0.7			0.6	
Shear adhesive strength (300°C)	7days	0.9			0.6	
MPa	14days	0.6			0.5	
	30days	0.8		0.7		

Testing method: complies with JIS K 6249.

(Not specified values)

Addition cure type (two-component typ

KE-1204 (A/B)

,						
	Conditions	Initial		200°C	250°C	
Parameter		IIIIIai	100h	500h	1000h	100h
Hardness JIS-A		70	76	77	76	70
Tensile strength	MPa	3.5	4.6	4.3	4.3	4.1
Elongation at break	%	90	70	90	70	60
Weight variation	wt%	_	-1.7	-3.4	-3.8	-2.2

Testing method: complies with JIS K 6249.

Conditions used to produce the test specimen: 100°C for 30 min.

■ Weather resistance and durability

Condensation cure type (one-component type)

■ KE-45 (Oxime neutral type) – Results of outdoor exposure testing

Physical properties of rubber

, , ,								
Parameter	Hardness	Tensile strength	Tensile strength Elongation at break		Estimated luminous intensity J/m ²			
Exposure period	Durometer A	MPa	%	Ultraviolet rays	Visible light rays	Infrared rays	mm	
Initial	30	2.3	350	_	_	_	_	
1month	35	2.0	370	1.60x10 ⁷	6.44x10 ⁷	9.13x10 ⁷	21	
3months	34	2.0	330	5.46x10 ⁷	2.81x10 ⁸	3.00x10 ⁸	63	
6months	37	2.0	360	1.44x10 ⁸	7.74x10 ⁸	8.80x10 ⁸	335	
1year	37	2.0	320	3.00x10 ⁸	1.63x10 ⁹	1.59x10 ⁹	1376	
2 years	37	1.8	310	5.87x10 ⁸	3.33x10 ⁹	3.32x10 ⁹	2130	

Testing method: complies with JIS K 6249.

(Not specified values)

Adhesion

Adherend: Glass, Primer C used.

Parameter	Maximum tensile stress	stress Cohesion break rate Estimated luminous intensity J/m²				Estimated precipitation
Exposure period	N/mm ²	%	Ultraviolet rays	Visible light rays	Infrared rays	mm
Initial	0.70	100	_	_	_	_
1month	0.67	100	1.70x10 ⁷	9.39x10 ⁷	9.03x10 ⁷	28
3months	0.69	100	6.75x10 ⁷	3.98x10 ⁸	3.57x10 ⁸	123
6months	0.71	100	1.72x10 ⁸	9.79x10 ⁸	9.01x10 ⁸	413
1year	0.70	100	3.01x10 ⁸	1.70x10 ⁹	1.61x10 ⁹	1361
2years	0.71	100	5.82x10 ⁸	3.37x10 ⁹	3.31x10 ⁹	2154

Testing method: complies with JIS A 1439.

(Not specified values)

■ KE-348 (acetone type) – Adhesion after outdoor submersion in water

Adherend P	rimer	Measurement parameter Submersion time (days)	Maximum tensile stress N/mm²	Elongation at break %	Cohesion break rate %
		Before submersion	0.66	230	100
Glass	None	After 7 days	0.58	280	100
		After 30 days	0.49	222	100
		Before submersion	0.72	250	100
JIS aluminum	С	After 7 days	0.68	230	100
		After 30 days	0.68	240	100

Testing method: complies with JIS A 1439.

(Not specified values)

■ KE-3423 (acetone type) – Ozone resistance

We tested deterioration in an ozone atmosphere. There is little deterioration even in adverse environments.

Parameter Deterioration time		Start	200	400	600	800	1000
	Hardness Durometer A	20	21	20	18	18	18
KE-3423	Elongation at break %	120	110	100	80	80	100
	Tensile strength MPa	0.3	0.3	0.3	0.3	0.2	0.3

Curing conditions: $23\pm2^{\circ}$ C / $50\pm5\%$ RH \times 7 days Deterioration conditions: 23° C / 100 ppm \times 1000 h

(Not specified values)

Addition cure type (one-component type)

■ KE-1830 - Adhesive durability

Toot oo	nditions	Tensile shear adhesive strength MPa (cohesion break rate %)		
1651 60	nullions	PBT	Aluminum	
Ini	tial	2.5 (100)	2.5 (100)	
Gasoline immersion	25°C / 100h	Release	0.4 (100)	
Pressure-cooker test	121°C / 50h	2.3 (100)	2.9 (100)	
FIGSSUIG-COUNCI IGSI	121°C / 100h	PBT deterioration	3.0 (100)	
Antifreeze	121°C / 24h	_	2.3 (100)	
Salt water spray (JIS Z 2371)	35°C / 24h	2.1 (60)	2.5 (100)	
High temperature test	150°C / 1000h	3.2 (100)	3.3 (100)	
Ozone resistance (80 ppm)	40°C / 300h	2.7 (100)	2.5 (100)	
Shock resistance test 1000 cycles	between -55°C and 150°C, 1 hr each	2.8 (100)	3.2 (100)	

^{*} The PH-11M-2AT actinometer was used in the tests.

^{*} The PH-11M-2AT actinometer was used in the tests.

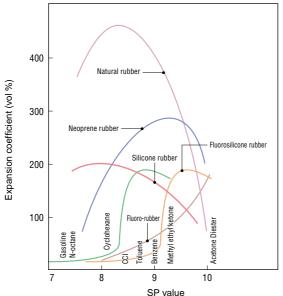
■ Chemical resistance

Condensation cure type (one-component type)

■ KE-42AL (acetic acid type) – Chemical resistance

Chemical Aque	Parameter eous solution %	External appearance	Hardness Durometer A	Tensile strength MPa	Elongation at break
					· ·
Starting value			26	2.5	400
	5	No abnormality detected	27	2.2	440
Sulfuric acid	10	(NAD)	24	2.0	370
	20	, ,	25	2.5	500
	50	Surface adhesion	28	1.6	270
	5		25	2.5	450
I hadwaahla via aaid	10	NAD	26	2.2	430
Hydrochloric acid	20	NAD	26	1.3	240
	50		23	1.3	310
	5	NAD	26	2.4	520
Nitric acid	10	Overform adhereion	21	1.7	450
	20	Surface adhesion	20	0.9	250
Acetic acid	100	Surface adhesion	27	2.5	510
	0.5		24	2.3	440
0	2	NAD	27	2.5	450
Casein soda	4	NAD	21	2.0	550
	15		24	3.0	460
	5		22	1.8	330
Ammonia	10	NAD	22	1.9	380
	20		22	2.3	370
	5		23	2.3	540
Pyridine	10	NAD	21	1.8	530
	20		20	1.7	510
Carbon disulfide	-	NAD	26	2.5	410

Curing conditions: $23\pm2^{\circ}$ C / $50\pm5\%$ RH \times 7 days Immersion conditions: 23° C \times 40 days


(Not specified values)

■ KE-3423 (acetone type) – Chemical resistance (coefficient of volumetric expansion)

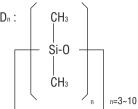
This was a test of the volumetric expansion of a cured specimen immersed in chemical solutions. The specimen did not dissolve, but did swell.

Sample Item	Gasoline	Engine oil	Gear oil	ATF
KE-3423 %	490	7.4	17	9.1

Shape: $30 \times 30 \times 2$ (mm) Curing conditions: $23\pm2^{\circ}\text{C}$ / $50\pm5\%$ RH \times 7 days Immersion conditions: $23^{\circ}\text{C} \times 40$ h (Not specified values)

■ Silicone and solubility parameter value Relationship of solubility parameter values (SP values) of solvents and the expansion coefficient of rubber

Fluorosilicone rubber in particular exhibits outstanding resistance to solvents, but silicone rubber also exhibits superior solvent resistance to that of other rubbers.


■ Low-molecular-weight (LMW) siloxane

What is LMW siloxane?

The figure at right shows the chemical formula of low-molecular-weight siloxane, a nonreactive cyclic dimethyl polysiloxane (generally D3-D10), which is volatile and therefore sublimates into the atmosphere both during and after curing. As shown below, LMW siloxane has been reported to cause electrical contact failure under certain conditions.

• Reduced LMW siloxane products (products that offer an answer to the problem of electrical contact failure)
These are products formulated with reduced levels of LMW siloxane, which has been shown to cause electrical contact failure under certain conditions.

Our products are basically Σ Dn (n=3~10): below 300 ppm or below 500 ppm. Electrical contact failure can occur under the conditions shown below, and while these products are not an absolute remedy, we do recommend the use of reduced LMW siloxane products for electrical and electronic applications. (For information about these products, please refer to pp. 20~21.)

■ Comparison of LMW siloxane concentration in common products and reduced LMW siloxane products (uncured extraction data)

[GC conditions] GC:gas chromatography

Equipment capillary gas chromatograph:Shimadzu GC-14A
Column DURABOND DB-1701

Column temp. 50°C → 300°C (15°C/min)

 Inj. Temp.
 300°C

 Carrier Gas
 He(30cm/sec)

 Detector
 FID

 Injection rate
 2 µl

 Extraction solvent
 acetone

Dn	KE-45 (Common products)	KE-3490 (Reduced LMW siloxane products)	
3	10>	10>	
4	500	10>	
5	260	10>	
6	240	10>	
7	220	10>	
8	160	50	
9	170	50	
10	220	60	
∑Dn(n=3~10)	1770	160	

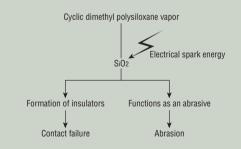
KE-3490 is a reduced LMW siloxane product, with ∑Dn controlled to below 300 ppm.

(Not specified values)

Electrical contact failure

It has already been noted that various substances may lead to contact failure. Contact failure may be caused by organic materials such as human body oils and organic gases, or inorganic materials such as hydrogen sulfide and ammonia gas. Electric and electronic manufacturers report that LMW siloxane can cause contact failure in the low-voltage, low-current range.

■ Relationship of load conditions to contact reliability


Effects of load on contact reliability (micro-relay)

	Load		Presence of Si accretion at point of contact (Y/N)	Contact resistance		
1	DC1V	1mA	N	No increase measured		
2	DC1V	36mA	N	Occasional increase of several ohms		
3	DC3.5V	1mA	N	No increase measured		
4	DC5.6V	1mA	Υ	No increase measured		
5	DC12V	1mA	Υ	Increase of several ohms, up to infinity		
6	DC24V	1mA	Y	Around 1500 times, readings of infinity were seen; at 3000 times, all were infinity		
7	DC24V	35mA	Y	Around 3000 times, readings of infinity were seen; at 4500 times, all were infinity		
8	DC24V	100mA	Υ	No increase measured		
9	DC24V	200mA	Υ	No increase measured		
10	DC24V	1A	Υ	No increase measured		
11	DC24V	4A	Υ	No increase measured		

[Test conditions] Switching frequency: 1 Hz, temp.: room temperature, contact force: 13 g

Presented by: The Institute of Electronics, Information and Communication Engineers (corporation), Yoshimura and Itoh EMC76-41 Feb. 18, 1977.

■ Mechanisms of contact failure

Dimethyl polysiloxane HO-[Si(CH₃)₂O]n-H with a degree of polymerization between 200 and 1000 is used among the prime ingredients of RTV silicone rubber, but the dimethyl polysiloxane derived in the normal manufacturing process does contain ring structures in trace amounts. Because this cyclic dimethyl polysiloxane is nonreactive and volatile, there is sublimation during and sometimes after curing. As shown in the figure above, this sublimated cyclic dimethyl polysiloxane can be a mechanism of contact failure under certain conditions.

■ Various additives

1. Additives used to regulate cure speed

In certain applications and working conditions, you may want to control the cure time of two-component RTV. In such cases, please use a cure accelerator or cure retardant. These agents are all effective when added in small amounts.

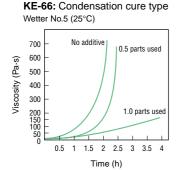
[Precautions]

 Be sure to add the prescribed curing agent in the standard, measured amount.

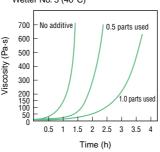
Without the addition of the curing agent, the product will not cure, even with the addition of cure accelerators of retardants.

Always measure accurately.

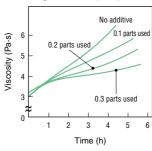
If a cure accelerator is added in excessive amounts, the product may cure during blending, while excessive amounts of a cure retardant can slow curing to such an extent that the product may not be completely cured even after several days.

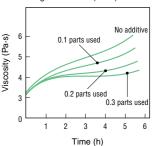

• Additives for condensation cure products and those for addition cure products cannot be used in combination.

For example, if a condensation cure type additive is mistakenly added to an addition cure RTV rubber, a faulty cure will result.


^{*} Please contact the nearest Shin-Etsu Sales Department for details.

	Additive	Characteristics
elerators	For condensation cure products only CAT-RS	By adding 0.1~ 0.5% CAT-RS in combination with the curing agent, cure time can be greatly reduced. However, the workable time will also be shortened.
Cure accelerators	For addition cure products only X-93-405	For example, by adding 1~2% to the base resin, cure time can be cut in half. However, the workable time will also be halved.
ardants	For condensation cure products only Wetter No.5	For example, by adding 1~2% to the base resin, cure time and workable time can be doubled.
Cure retardants	For addition cure products only Control Agent No.6-10	For example, by adding 1% to the base resin, cure time and workable time can be lengthened by approx. 2.5 times.


■ Additive quantity and viscosity change

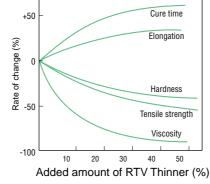

KE-66: Condensation cure type Wetter No. 5 (40°C)

KE-1212 (A/B/C): Addition reaction type Control Agent No. 6-10 (25°C)

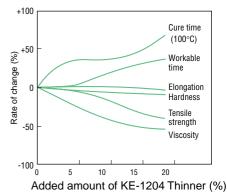
KE-1212 (A/B/C): Addition cure type Control Agent No. 6-10 (20°C)

2. Diluents

Use RTV Thinner or KE-1204 Thinner as a diluent if you want to reduce the viscosity of the curing agent. For example, by adding 10% RTV Thinner, the viscosity can be reduced by about half. However, excessive amounts of RTV Thinner or KE-1204 Thinner will have adverse effects on the physical properties, so please refer to the figure at right regarding additive quantities. We recommend 10% or below as a standard additive quantity. RTV Thinner and KE-1204 Thinner contain no organic solvents such as toluene or xylene.


Effects of diluents on various properties

- ◆Base resin viscosity → reduction (major effect)
- ■Workable time (cure time) → extension (slight effect)
- ◆Hardness, tensile strength → reduction (major effect)
- ◆Elongation → enhancement (slight effect)


* When used with an addition cure product, a small quantity of RTV Thinner can greatly reduce viscosity, but with a degradation of physical properties. If possible, KE1204 Thinner should be used with addition reaction products.

Relationship of quantity of added diluent and various physical properties

3. Barrier coat

Shin-Etsu Barrier Coat No. 6 is a low viscosity liquid, and can thus be brushed on or applied as a spray. Applying it to the base form can prevent curing inhibition and the mutual adhesion of RTV rubbers. Please note that Shin-Etsu Barrier Coat No. 6 does not have adhesive properties and therefore cannot be used as an adhesion primer.

Appearance	Specific gravity 25°C	Viscosity 25°C Pa⋅s	Solvent
Colorless transparent liquid	0.82	0.5	Toluene

4. Curing inhibitors of addition cure RTV

Curing inhibitors include such substances as sulfur, phosphorus, nitrogen compounds, water, and organometallic salts. In addition, condensation cure RTV rubber may act as a curing inhibitor.

[Specific examples of curing inhibitors]

Organic rubbers (natural rubber, and synthetic rubbers such as chloroprene rubber, nitrile rubber, and EPDM) ◆Soft PVC resins ◆Amine-cured epoxy resins ◆Rubber clay and oil clay ◆Isocyanates of urethane resins ◆Condensation cure RTV rubber ◆Some vinyl tape adhesives, glues, paints (polyester-based paints, etc.), waxes, soldering flux, and pine gum

■Primers

Primers are pre-treatment agents. The application of a primer on some substrates will ensure better adhesion.

■Primer selection standards

Substrates	Grade	KE-41	KE-42	KE-44	KE-45	KE-347	KE-348
	Glass					0	0
	Sun cut glass					С	С
Glass	Ceramics	0	0	0	0		_
	Enamel					0	
	Tile						
	Marble						
Stone	Slate	_	_	MT	MT	MT	MT
Stolle	Mortar	_		IVII	IVII	IVII	IVII
	Concrete						
	Aluminum	0	0			0	0
	Stainless steel					×	×
	Iron					С	С
	Copper	_	_		0	0	
Matal	Tin						
Metal	Chrome	0	С				
	Nickel		_	С	С]	
	Galvanized steel	_		0	0		
	Tinplate						
Painted panel	Baked acryl		_	С	С		
Fainteu panei	Melamine paint			0	0		
Rubber	Silicone rubber	0	0	С	0	С	0
	Hard PVC	_	_	×	0		0
	Acrylic	T	T	T	T		_
	Polycarbonate	D-2	D-2	D-2	D-2	D-2	D-2
	Nylon 66	_	_	С	0	С	0
	PBT	X	×	×	×	×	×
	ABS			U, T	U, T		
Plastic	Ероху	0					
	Polyester	0		0	0		
	Phenol						
	Urethane	С	С	С	С	С	С
	Teflon						
	Polyethylene	×	×	×	×	×	×
	Polypropylene						

O: Adheres without primer X: Won't adhere even with primer MT, C, D-2, U, T: name of optimal primer (e.g. U = Primer U)

[Method of application]

- 1. Eliminate moisture, oil, and dirt from the area to be treated
- 2. Apply to the adherend with a brush or soft cloth.
- 3. Air-dry, and allow primer to dry completely before continuing with the next process.

[Precautions]

- Be sure to adequately prepare the substrate surface prior to application. Inadequate preparation may lead to poor adhesion.
- Adhesive strength will vary depending on the materials and surface condition of the adherend. We recommend testing a small sample before full application.
- Always provide adequate ventilation when working.
- Primers fall under the category of UN Hazardous Materials. (See p. 26 for details.)
 - They should never be used near open flame or in high temperature conditions. Primers should be stored in a sealed container in a cool, dark place away from flame.

Product Listing by Intended Use

One-component RTV rubber

Primary application	Grade	Cure type	Daile description		Intended use				
and characteristics	Grade	(by-product gas)	Brief description	Sealing	Coating	Potting	Thermally conductive	Page	
	KE-3423	Condensation cure (acetone)	Low viscosity, reduced low-molecular-weight (LMW) siloxane		0			24	
-	KE-347	Condensation cure (acetone)	Medium viscosity		0			18	
	KE-3475	Condensation cure (acetone)	Low viscosity		0			24	
	KE-3479	Condensation cure (acetone)	High viscosity	0				18	
	KE-348	Condensation cure (acetone)	Paste	0				18	
	KE-3495	Condensation cure (acetone)	Low viscosity, reduced LMW siloxane	0	0			20, 24	
	KE-4895	Condensation cure (alcohol)	Low viscosity, reduced LMW siloxane	0	0			20, 24	
	KE-4896	Condensation cure (alcohol)	Medium viscosity, reduced LMW siloxane	0	0			20	
	KE-4897	Condensation cure (alcohol)	High viscosity, reduced LMW siloxane	0				20	
General electrical	KE-4898	Condensation cure (alcohol)	Paste, reduced LMW siloxane	0				20	
purpose	KE-1056	Addition cure	Transparent gel, excellent low-temperature resistance			0		23	
	KE-1151	Addition cure	Thixotropic gel, excellent low-temperature resistance			0		23	
	KE-1820	Addition cure	High strength	0				19	
	KE-1825	Addition cure	Paste	0				19	
	KE-1830	Addition cure	High viscosity	0	0			19	
	KE-1831	Addition cure	Non-flammable (UL V-0 certified product)	0				19	
	KE-1833	Addition cure	Excellent adhesion to PPS, heat resistant	0				19	
	KE-1842	Addition cure	Low viscosity, low hardness		0	0		19, 24	
	KE-1884	Addition cure	Low-temperature curing, medium viscosity, reduced LMW siloxane	0	0			21	
	X-32-1947	Addition cure	Low-temperature curing, high viscosity, reduced LMW siloxane	0				21	
	X-32-1964	Addition cure	Low-temperature curing, low viscosity, reduced LMW siloxane	0	0	0		21, 24	
	KE-3424G	Condensation cure (acetone)	Low viscosity, reduced ultra-LMW siloxane	0	0			21, 24	
	KE-3490	Condensation cure (acetone)	Paste, reduced LMW siloxane	0				20	
Non-flammable (UL certified	KE-3494	Condensation cure (acetone)	Medium viscosity, reduced LMW siloxane	0	0			20	
product *1)	KE-40RTV	Condensation cure (Oxime)	Paste	0				18	
	KE-4890	Addition cure (alcohol)	Paste, reduced LMW siloxane	0				20	
	KE-3497	, ,	Medium viscosity, reduced LMW siloxane	0	0			20	
MIL standard *2	KE-3498	Condensation cure (acetone)	Paste, reduced LMW siloxane	0				20	
	KE-3493	Condensation cure (acetone)	Thermal conductivity (1.6 W/m·K), reduced LMW siloxane	0				24	
	KE-3466	Condensation cure (acetone)	Thermal conductivity (1.9W/m-K), reduced LMW siloxane, Non-flammable (UL certified product*1)	0			0	24	
	KE-3467	Condensation cure (acetone)	Thermal conductivity (2.4W/m-K), reduced LMW siloxane, Non-flammable (UL certified product*1)	0			0	24	
Thermal conductivity	KE-1862	Addition cure	Thermally conductive potting (0.83 W/m·K)	0		0	0	24	
	X-32-2020	Addition cure	Thermally conductive potting (1.9 W/m·K), low viscosity, reduced LMW siloxane	0		0	0	24	
	KE-1867	Addition cure	Thermal conductivity (2.5W/m-K), reduced LMW siloxane. Non-flammable (UL certified product*1)	0		0	0	24	
	KE-1607 KE-3491	Condensation cure (acetone)	Conductive (resistance: 2Ω ·m), reduced LMW siloxane	0				21	
Conductivity	KE-3491	Condensation cure (acetone)	High conductivity (resistance: 0.002 Ω-m), reduced LMW siloxane	0				21	
	KE-3492 KE-3417*3	Condensation cure (acetone)	Medium viscosity, cannot be used as an insulator, reduced LMW siloxane	0				21	
Super heat resistance	KE-3417	Condensation cure (acetone)	Paste, cannot be used as an insulator, reduced LMW siloxane	0				21	
	FE-123	Condensation cure (acetic acid)	Oil- and solvent-resistant	0				25	
		, ,				0			
Oil- and solvent- resistance	FE-57	Addition cure	Gel, oil- and solvent-resistant	0				23, 25	
	FE-61	Addition cure	Oil and solvent-resistant					25	
	X-32-1619	Addition cure	Oil- and solvent-resistant, low viscosity	0		0		25	

Primary application Grade		Cure type	Brief description		Dono			
and characteristics	Graue	(by-product gas)	brief description	Sealing	Coating	Potting	Thermally conductive	Page
Plastic adhesion	KE-3427	Condensation cure (acetone)	Adheres to plastics	0				21
Plastic adhesion KE-3428		Condensation cure (acetone)	Adheres to plastics	0				21
	KE-41	Condensation cure (acetic acid)	High viscosity	0				18
	KE-42	Condensation cure (acetic acid)	Paste	0				18
	KE-44	Condensation cure (oxime)	High viscosity	0				18
General industrial purpose	KE-441	Condensation cure (oxime)	Low viscosity	0	0			18
pp.s.s	KE-445	Condensation cure (oxime)	Low viscosity	0	0			18
	KE-45	Condensation cure (oxime)	Paste	0				18
	KE-45S	Condensation cure (oxime)	Solvent/diluent type	0	0			18

Two-component (three-component) RTV rubber

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Component	,					
	KE-103	Addition cure	Transparent rubber, will cure at room temperature		0			22
	KE-108	Condensation cure (alcohol)	Transparent rubber, will cure at room temperature		0			22
	KE-119	Condensation cure (alcohol)	Potting, high hardness		0			22
	KE-66	Condensation cure (alcohol)	Potting, self-bonding	0	0	0		20, 22
	KE-200	Condensation cure (acetone)	Rapid-cure potting, self-bonding, reduced LMW siloxane	0		0		22
General electrical	KE-1800T (A/B)	Addition cure	Translucent rubber, adhesive	0				20
purpose	KE-1031 (A/B)	Addition cure	Transparent rubber, adhesive	0	0	0		22
	KE-1051J (A/B)	Addition cure	Transparent gel, high viscosity, will cure at room temperature			0		23
	KE-1052 (A/B)	Addition cure	Transparent gel, will cure at room temperature			0		23
	KE-106	Addition cure	Transparent rubber, high hardness			0		22
	KE-109 (A/B)	Addition cure	Transparent rubber, adhesive		0	0		22
	KE-118	Condensation cure (alcohol)	Self-bonding	0		0		20
	KE-1204 (A/B)	Addition cure	Reduced LMW siloxane			0		22
	KE-1204 (AL/BL)	Addition cure	Low viscosity, reduced LMW siloxane			0		22
Non-flammable (UL certified	KE-1281 (A/B)	Addition cure	Adhesive, low hardness, reduced LMW siloxane	0		0		21, 22
product*1)	KE-1800 (A/B/C)	Addition cure	Adhesive, high hardness	0				20
	KE-1801 (A/B/C)	Addition cure	Adhesive, high hardness	0				20
	KE-1802 (A/B/C)	Addition cure	Adhesive, high hardness	0				20
Fooming	KE-513 (A/B)	Condensation cure (hydrogen)	Filling, foaming, triple-volume foam	0				25
Foaming	KE-521 (A/B)	Addition cure (hydrogen)	Filling, foaming, triple-volume foam	0				25
Thermal conductivity	KE-1861 (A/B)	Addition cure	Adhesive, Thermal conductivity (1 W/m·K)	0		0	0	24

^{*1} See p. 27 for details about UL certified products.

LMW: low-molecular-weight

■ Sealing – General industrial purpose

			One-	component room-temperature	cure	
Grade		KE-45	KE-44	KE-441	KE-445	KE-45S
Cure type (by-prod	duct gas)	Condensation (oxime)	Condensation (oxime)	Condensation (oxime)	Condensation (oxime)	Condensation (oxime)
Brief description		Paste	High viscosity	Low viscosity	Low viscosity	Solvent/diluent type
A	Consistency	Paste	Viscous liquid	Liquid	Liquid	Toluene solvent
Appearance	Color	See p. 28	See p. 28	See p. 28	See p. 28	See p. 28
Viscosity	Pa⋅s	_	70	15	5	0.6
Density 23°C	g/cm ³	1.05	1.04	1.04	1.05	1.05
Hardness Durometer A		30	25	20	25	20
Tensile strength	MPa	2.0	2.0	1.7	2.0	2.0
Elongation at brea	k %	350	300	280	200	350
Volume resistivity	TΩ·m	5	5	5	5	5
Dielectric breakdown	strength* kV	23	20	20	25	21
Dielectric constant	50 Hz	3.0	2.8	2.8	2.8	3.0
Dissipation factor	50 Hz	5×10 ⁻³	5×10 ⁻³	5×10 ⁻³	5×10 ⁻³	5×10 ⁻³
Thermal conductiv	rity W/m·K	0.21	0.21	0.21	0.21	0.21
Tack-free time min		6	40	60	20	60
Lap shear strength	п МРа	1.0 (aluminum)	1.2 (aluminum)	1.0 (aluminum)	0.3 (aluminum)	_

Data: Relationship between cure speed and temperature and humidity (KE44, 45, 441, 42) \cdots p. 6 *Measured by 1mm

Outdoor exposure testing (KE45) \cdots p. 11 Chemical resistance (KE42AL) \cdots p. 12

■ Sealing – General electrical purpose (one-component)

One-component room-temperature cure

(Not specified values)

		One-component room-temperature cure				
Grade		KE-40RTV	KE-42	KE-41		
Cure type (by-prod	luct gas)	Condensation (oxime)	Condensation (acetic acid)	Condensation (acetic acid)		
Brief description		UL certified product	Paste	High viscosity		
Annogrango	Consistency	Paste	Paste	Viscous liquid		
Appearance	Color	See p. 28	See p. 28	See p. 28		
Viscosity	Pa⋅s	_	_	100		
Density 23°C	g/cm ³	1.58	1.05	1.04		
Hardness Durome	ter A	60	28	30		
Tensile strength	MPa	2.9	2.0	2.5		
Elongation at break	(%	200	400	250		
Volume resistivity	TΩ·m	1	1 1			
Dielectric breakdown	strength* kV	25	25 22			
Dielectric constant	50 Hz	3.9	3.0	2.9		
Dissipation factor	50 Hz	1×10 ⁻²	5×10 ⁻³	5×10 ⁻³		
Thermal conductiv	ity W/m·K	0.42	0.21	0.21		
Tack-free time min		12	5	6		
Lap shear strength	MPa	1.0 (aluminum)	1.0 (aluminum)	1.0 (aluminum)		

KE-348	KE-3479	KE-347	
Condensation (acetone)	Condensation (acetone)	Condensation (acetone)	
Paste	High viscosity	Medium viscosity	
Paste	High viscosity	Medium viscosity	
See p. 28	See p. 28	See p. 28	
_	75	55	
1.05	1.06	1.04	
30	30	30	
2.0	2.5	2.5	
400	350	300	
1	2	3	
23	20	25	
3.0	2.9	2.9	
4×10 ⁻³	3×10 ⁻³	3×10 ⁻³	
0.21	0.21	0.21	
1	2	4	
1.2 (aluminum)	1.5 (aluminum)	1.0 (aluminum)	

^{*}Measured by 1mm (Not specified values)

Data: (Not specified values)

Relationship between cure speed and

temperature and humidity (KE348) \cdots p. 6 $\,^*$ Measured by 1mm Change in adhesive strength over time (KE3475, 347, 348) \cdots p. 8 Adhesion after outdoor submersion in water (KE348) \cdots p. 11

■ Sealing – General electrical purpose (one-component)

				One-compor	nent heat cure		
Grade		KE-1820	KE-1825	KE-1830	KE-1831	KE-1833	KE-1842
Cure type		Addition	Addition	Addition	Addition	Addition	Addition
Brief description		High viscosity	Paste	High viscosity	Non-flammable UL V-0 certified product	Good adhesion to PPS, heat resistant	Low hardness
A	Consistency	Paste	Paste	High viscosity	Paste	High viscosity liquid	Low viscosity
Appearance	Color	Opaque white	Opaque white	Light gray	Black	Reddish brown/black	White
Viscosity	Pa⋅s	_	_	110	200	140	4.0
Density 23°C	g/cm ³	1.08	1.06	1.27	1.28	1.34	1.00
Curing conditions, star	ndard cure time	1h / 120°C	1h / 120°C	1h / 120°C	1h / 120°C	1h / 120°C	1h / 120°C
Hardness Durome	eter A	45	29	40	30	33	10
Tensile strength	MPa	5.4	3.3	4.3	3.9	3.4	0.4
Elongation at breal	k %	600	600	300	400	350	200
Volume resistivity	TΩ·m	4	2	5	2	2	1
Dielectric breakdown	strength kV	25	22	25	25	25	20
Dielectric constant	50 Hz	3.5	3.5	3.5	3.5	3.5	3.5
Dissipation factor	50 Hz	5×10 ⁻³	5×10 ⁻³	5×10 ⁻³	5×10 ⁻³	5×10 ⁻³	5×10 ⁻³
Thermal conductivity W/m·K		0.25	0.20	0.27	_	_	_
Lap shear strength	мРа	2.0 (aluminum)	1.5 (aluminum)	2.0 (aluminum)	1.0 (aluminum)	1.8 (aluminum)	0.2 (aluminum)

^{*}Measured by 1mm (Not specified values)

■ Sealing/General electrical purpose (two-component)

		Two-component ro	om-temperature cure		Tw	o-component heat co	ure
Grade		KE-118	KE-66	KE-1800 (A/B/C)	KE-1801 (A/B/C)	KE-1802 (A/B/C)	KE-1800T (A/B)
Cure type		Condensation (alcohol)	Condensation (alcohol)	Addition	Addition	Addition	Addition
Brief description		Self-bonding	Self-bonding	UL certified product, adhesive, high strength		Translucent, adhesive, high strength	
Annogrango	Appearance		Liquid	Paste	Paste	Paste	Paste
Appearance	Color	Opaque white	Opaque white	A: white	A: white	A: black	A/B: translucent
Viscosity	Pa⋅s	2	5	A:350 / B:14	A:350 / B:14	A:300 / B:14	A:350 / B:200
Density 23°C	g/cm ³	1.14	1.25	1.10	1.10	1.10	1.08
Curing conditions, star	ndard cure time	72h / 23°C	72h / 23°C	1h / 120°C	1h / 120°C	1h / 120°C	1h / 120°C
Hardness Durome	eter A	45	40	28	28	30	26
Tensile strength	MPa	1.5	1.5	5.0	5.0	5.0	5.5
Elongation at break	k %	90	140	600	600	600	600
Volume resistivity	TΩ·m	4	4	0.5	0.1	0.1	1
Dielectric breakdown	strength* kV	25	25	25	25	25	23
Dielectric constant	50Hz	3.3	_	3.1	3.1	3.1	_
Dissipation factor	50Hz	4×10 ⁻³	_	1×10 ⁻³	1×10 ⁻³	5×10 ⁻³	_
Thermal conductiv	rity W/m·K	0.17	_	0.17	0.17	0.17	0.17
Workable time 23	°C h	0.3	1.5	4.0	4.0	6.0	6.0
Lap shear strength	n MPa	_	0.6 (copper) 0.6 (Bakelite)	1.7 (glass) 1.7 (polycarbonate)	1.7 (glass) 1.7 (polycarbonate)	1.7 (glass) 1.7 (polycarbonate)	1.5 (PBT)
Name of curing ag	ent	CAT-118-BL	CAT-RC	KE1800B (KE1800C)	KE1800B (KE1800C)	KE1800B (KE1800C)	_
Blend ratio		100 / 5	100 / 2	100/10/2	100 / 10 / 2	100/10/2	100 / 100

^{*}Measured by 1mm (Not specified values)

■ Sealing/reduced low-molecular-weight siloxane types

			One-	component room-temperature	cure	
Grade		KE-4898	KE-4897	KE-4896	KE-4895	KE-4890
Cure type (by-pro	oduct gas)	Condensation (alcohol)	Condensation (alcohol)	Condensation (alcohol)	Condensation (alcohol)	Condensation (alcohol)
Brief description		Paste	High viscosity	Medium viscosity	Low viscosity	UL certified product
Consistency		Paste	High viscosity	Medium viscosity	Low viscosity	Paste
Appearance -	Color	See p. 28	See p. 28	See p. 28	See p. 28	See p. 28
Viscosity	Pa⋅s	_	100	50	5	_
Density 23°C	g/cm ³	1.04	1.06	1.04	1.04	1.48
Hardness Durom	neter A	40	40	40 38		50
Tensile strength	MPa	2.2	2.0	1.7	1.5	2.0
Elongation at brea	ak %	360	200	170	140	200
Volume resistivity	/ TΩ·m	30	50	50	90	6
Dielectric breakdowr	n strength* kV	25	24	20	20	25
Dielectric constar	nt 50Hz	2.8	2.8	2.8	2.8	3.4
Dissipation factor	r 50Hz	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	4×10 ⁻³
Thermal conductivity W/m-K		_	_	_	_	0.33
Tack-free time min		6	12	12	11	6
Lap shear strengt	th MPa	0.8 (aluminum)	0.8 (aluminum)	0.8 (aluminum)	0.5 (aluminum)	1.3 (aluminum)
LMW content ∑[D3~D10 ppm	< 300	< 300	< 300	< 300	< 300

^{*} Measured by 1mm LMW: low-molecular-weight

(Not specified values)

			One-	component room-temperature	cure	
Grade		KE-3490	KE-3494	KE-3498	KE-3497	KE-3495
Cure type (by-pr	oduct gas)	Condensation (acetone)	Condensation (acetone)	Condensation (acetone)	Condensation (acetone)	Condensation (acetone)
Brief description		UL certified product	UL certified product	Paste	Medium viscosity	Low viscosity
Consistency		Paste	Medium viscosity	Paste	Medium viscosity	Low viscosity
Appearance	Color	Gray	Gray	See p. 28	See p. 28	See p. 28
Viscosity	Pa⋅s	_	50	_	40	4.5
Density 23°C	g/cm ³	1.18	1.40	1.07	1.07	1.03
Hardness Durometer A		43	35 45 35		35	30
Tensile strength	MPa	2.5	2.5 3.9 3.0		1.1	
Elongation at bre	eak %	350	250	480	250	200
Volume resistivit	y TΩ·m	3	3	1	2	4
Dielectric breakdowr	strength* kV	28	25	25	24	20
Dielectric consta	nt 50Hz	3.3	3.5	3.0	3.0	2.8
Dissipation facto	r 50Hz	1×10 ⁻²	1×10 ⁻²	1×10 ⁻³	3×10 ⁻³	3×10 ⁻³
Thermal conductivity W/m·K		0.25	0.42	0.21	0.21	0.21
Tack-free time min		3	8	1	9	11
Lap shear streng	th MPa	1.5 (aluminum)	1.5 (aluminum)	1.5 (aluminum)	0.7 (aluminum)	0.3 (aluminum)
LMW content Σ	D3~D10 ppm	< 300	< 300	< 300	< 300	< 300

^{*} Measured by 1mm LMW: low-molecular-weight

■ Sealing/reduced low-molecular-weight siloxane types

			One-component roo	m-temperature cure	
Grade		KE-3418 ^{*2}	KE-3417 ^{*2}	KE-3427	KE-3428
Cure type (by-pro	oduct gas)	Condensation (acetone)	Condensation (acetone)	Condensation cure (acetone)	Condensation cure (acetone)
Brief description		Can not be used as an insulator	Can not be used as an insulator	Adheres to plastics	Adheres to plastics
Annogranos	Consistency	Paste	Medium viscosity	Medium viscosity	Paste
Appearance -	Color	Black	Black	Gray	Gray
Viscosity	Pa⋅s	_	45	55	_
Density 23°C	g/cm ³	1.09	1.05	1.01	1.05
Hardness Durometer A		45	35 24		32
Tensile strength	MPa	2.0	1.4	0.4	1.5
Elongation at bre	ak %	200	200	260	320
Volume resistivit	y TΩ·m	1×10 ⁻¹⁰	0.2	40	40
Dielectric breakdown	strength*1 kV	5	5	22	22
Dielectric consta	nt 50Hz	_	10.5	2.8	2.8
Dissipation facto	r 50Hz	_	8×10 ⁻²	2 ×10 ⁻³	2×10 ⁻³
Thermal conduct	ivity W/m·K	0.33	0.25	_	_
Tack-free time	min	5	12	6	3
Lap shear streng	th MPa	1.4 (aluminum)	0.8 (aluminum)	0.4 (aluminum)	1.3 (aluminum)
LMW content Σ	D3~D10 ppm	< 300	< 300	< 300	< 300

^{*1} Measured by 1mm

(Not specified values)

		One-com	ponent room-tempera	ature cure	01	ne-component heat cu	ıre	Two-component heat cure
Grade		KE-3424G	KE-3491	KE-3492	X-32-1947	X-32-1964	KE-1884	KE-1281 (A/B)
Cure type (by-product gas)		Condensation (acetone)	Condensation (acetone)	Condensation (acetone)	Addition	Addition	Addition	Addition
Brief description		Reduced ultra-low- molecular-weight siloxane product, UL certified, electrode coating material	Conductive	Conductive	Low-temperature curing	Low-temperature curing	Low-temperature curing	Adhesive, low hardness, UL certified product
Annearance	Consistency	Low viscosity	Paste	Paste	High viscosity	Low viscosity	Medium viscosity	Low viscosity
Appearance	Color	Gray	Black	Black	White	Opaque white	White	A: black / B: light gray
Viscosity	Pa⋅s	20	_	_	100	12	55	A: 2 / B: 1
Density 23°C	g/cm ³	1.32	1.09	1.88	1.14	1.03	1.22	1.37
Curing conditions, st	tandard cure time	_	_	_	1h / 120°C	1h / 120°C	1h / 120°C	1h / 100°C
Hardness Duron	neter A	50	50	85	36	29	35	20
Tensile strength	MPa	4.0	3.0	2.0	2.9	2.9	3.5	1.0
Elongation at bre	eak %	180	350	30	230	160	230	140
Volume resistivit	ty TΩ·m	40	2 ^{*1}	0.002*1	10	10	10	1
Dielectric breakdown	n strength*2 kV	22	_	_	25	25	25	27
Dielectric consta	nt 50 Hz	3.6	_	_	3.1	3.1	3.1	3.5
Dissipation facto	r 50 Hz	8.8×10 ⁻³	_	_	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³
Thermal conduct	tivity W/m·K	0.4	_	0.84	_	_	_	0.28
Tack-free time	min	6	5	2			_	7*3
Lap shear streng	ith MPa	0.4 (aluminum)	1.0 (aluminum)	1.0 (aluminum)	2.0 (aluminum)	0.8 (aluminum)	1.6 (aluminum)	0.3 (aluminum)
Blend ratio		_	_	_	_	_	_	100 / 100
LMW content Σ	D3~D10 ppm	ΣD3~D20 < 300 ^{*4}	< 300	< 300	< 100	< 100	< 100	< 500

^{*1} KE-3491, KE-3492: unit = Ω -m *2 Measured by 1mm *3 Workable time (23°C:h) *4 KE3424G is a high-grade product, Σ Dn (n=3~20) <300 ppm LMW: low-molecular-weight

^{*2} KE-3417 and KE-3418 are not suitable for use as insulators.

[■]Testing method: complies with JIS K 6249.

■ Potting (rubber)

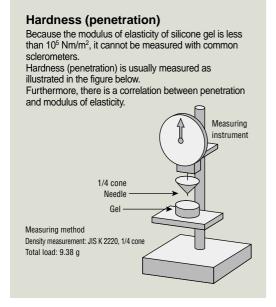
			Two-	component room-temperature	cure	
Grade		KE-119	KE-66	KE-103	KE-108	KE-200
Cure type (by-pro	duct gas)	Condensation (alcohol)	Condensation (alcohol)	Addition	Condensation (alcohol)	Condensation (acetone)
Brief description		High hardness	Self-bonding	Transparent, room-temperature cure	Transparent, room-temperature cure	Reduced LMW siloxane, rapid cure
Annogranos	Consistency	Low viscosity	Low viscosity	Low viscosity	Liquid	Low viscosity
Appearance Color		Reddish brown	Light gray	Colorless transparent	Colorless transparent	Straw-colored translucent
Viscosity	Pa⋅s	17	5	1	0.7	2.8
Density 23°C	g/cm ³	1.47	1.25	0.97	0.98	1.01
Curing conditions, sta	ndard cure time	72h / 23°C	72h / 23°C	72h / 23°C	72h / 23°C	72h / 23°C
Hardness Durom	eter A	68	40	24	31	25
Tensile strength	ngth MPa 5.0		1.5	0.2	_	0.4
Elongation at brea	k %	100	140	100	_	100
Volume resistivity	TΩ·m	1	4	0.8	0.1	60
Dielectric breakdown	strength*1 kV	23	25	20	23	20
Dielectric constan	t 50 Hz	_	_	3.1	_	2.9
Dissipation factor	50 Hz	_	_	1×10 ⁻³	_	3×10 ⁻³
Thermal conductiv	/ity W/m⋅K	0.23	_	0.15	0.15	0.21
Workable time 23	°C h	2.0	1.5	3.0	6.0	0.5
Lap shear strength	n MPa	_	0.6 (copper) 0.6 (Bakelite)	_	_	0.5 (copper) 0.5 (Bakelite)
Name of curing ag	jent	CAT-RP	CAT-RC	CAT-103	CAT-108	CX200
Blend ratio		100 / 10	100 / 2	100 / 5	100 / 5	100 / 10
LMW content ∑D	3~D ₁₀ ppm	*2	*2	*2	*2	< 500

Data: Adhesion to various materials (KE200) \cdots p. 8 *1 Measured by 1mm *2 Not a reduced LMW siloxane product LMW: low-molecular-weight

(Not specified values)

				Two-compor	nent heat cure		
Grade		KE-1204 (A/B)	KE-1204 (AL/BL)	KE-1031 (A/B)	KE-106	KE-109 (A/B)	KE-1281 (A/B)
Cure type		Addition	Addition	Addition	Addition	Addition	Addition
Brief description		UL certified product, low hardness, reduced LMW siloxane		Transparent, adhesive	Transparent, high strength	Transparent, adhesive	UL certified product, low hardness, reduced LMW siloxane
Appearance Consistency		Liquid	Liquid	Liquid	Liquid	Liquid	Liquid
Аррсаганос	Color	A: reddish brown / B: light gray	A: reddish brown / B: light gray	A/B: colorless transparent	Colorless transparent	A/B: colorless transparent	A: black / B: light gray
Viscosity	Pa⋅s	A: 6 / B: 4	A: 4 / B: 2	A: 1 / B: 0.7	3.5	A: 1 / B: 1	A: 2 / B: 1
Density 23°C	g/cm ³	1.54	1.52	0.97	1.02	1.02	1.37
Curing conditions, stan	dard cure time	15min / 100°C	15min / 100°C	2h / 80°C	30min / 150°C	1h / 100°C	1h / 100°C
Hardness Durome	ter A	70	65	20	56	25	20
Tensile strength	MPa	3.5	3.0	0.4	8.0	1.5	1.0
Elongation at breal	K %	70	80	150	100	150	140
Volume resistivity	TΩ·m	1	2	0.1	3	5	1
Dielectric breakdown s	trength*1 kV	27	27	20	23	24	27
Dielectric constant	50 Hz	3.2	3.3	3.1	3.1	2.9	3.5
Dissipation factor	50 Hz	1×10 ⁻³	5×10 ⁻³	1×10 ⁻³	5×10 ⁻³	7×10 ⁻⁴	0.001
Thermal conductiv	ity W/m·K	0.30	0.29	0.15	0.15	0.15	0.28
Workable time 23	°C h	8.0	8.0	4.0	2.0	8.0	7.0
Lap shear strength MPa		_	_	0.1 (aluminum)	_	0.2 (aluminum)	0.3 (aluminum)
Name of curing ag	ent	_	_	_	CAT-RG	_	_
Blend ratio		100 / 100	100 / 100	100 / 100	100 / 10	100 / 100	100 / 100
LMW content ∑Da	3~D10 ppm	< 500	< 500	*2	*2	*2	< 500

Data: Relationship between cure speed and time (KE1204) \cdots p. 7 Relationship of quantity of added diluent and various physical properties (1204 Thinner) \cdots p. 14


^{*1} Measured by 1mm *2 Not a reduced LMW siloxane product LMW: low-molecular-weight

[■]Testing method: complies with JIS K 6249. [Conversion to old JIS units] Viscosity: 10 P=1 Pa-s; Strength: 10 kgf/cm²=0.98 MPa; Volume resistivity: $10^{14} \Omega \cdot \text{cm} = 1 \text{ T } \Omega \cdot \text{m}$

■ Potting (gel)

			One-component heat cure		Two-component roo	om-temperature cure
Grade		KE-1056	KE-1151	FE-57	KE-1051J (A/B)	KE-1052 (A/B)
Cure type		Addition	Addition	Addition	Addition	Addition
Brief description		Low-temperature-resistant, transparent gel	Low-temperature-resistant, thixotropic gel	Oil- and solvent-resistant gel	Transparent gel	Transparent gel
Annogrange	Consistency	Liquid	Liquid	Liquid	Liquid	Liquid
Appearance	Color	Slightly cloudy	Translucent	Light brown	A/B: colorless transparent	A/B: colorless transparent
Viscosity*1	mPa⋅s	800	2500	2000	A: 900 / B: 700	A: 1000 / B: 8700
Density 25°C	g/cm ³ 0.99		1.00*3	1.28	0.97	0.97
Curing conditions / Star	ndard cure time	30min / 130°C	30min / 130°C	2h / 125°C	24h / 23°C	24h / 23°C
Hardness Penetrat	ion*2	90	90	60	65	65
Tensile strength	MPa	_	_	_	_	_
Volume resistivity	TΩ·m	10	5.0	0.02	10	10
Dielectric breakdown s	trength*4 kV	15	-	_	_	20
Dielectric constant	50 Hz	2.9	3.0	7.0	2.9	2.9
Dissipation factor 50 Hz		2×10 ⁻⁴	6×10 ⁻⁴	1×10 ⁻²	6×10 ⁻⁴	6×10 ⁻⁴
Thermal conductivity W/m-K		0.15	0.15	_	0.15	0.15
Workable time 23°C h		_	_	_	2.0	4.0
Blend ratio		_		_	100 / 100	100 / 100

^{*1 1000} mPa·s=1 Pa·s

^{*2} Hardness (penetration) – see figure below. *3 Testing temperature: 23°C

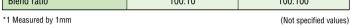
^{*4} Measured by 1mm

■ Coating

			One-com	ponent room-tempera	ature cure		One-compon	ent heat cure
Grade	Grade KE-342		KE-3475	KE-3495	KE-4895	KE-3424G	KE-1842	X-32-1964
Cure type (by-prod	luct gas)	Condensation (acetone)	Condensation (acetone)	Condensation (acetone)	Condensation (alcohol)	Condensation (acetone)	Addition	Addition
Brief description		Reduced LMW siloxane product	Low viscosity	Reduced LMW siloxane product	Reduced LMW siloxane product	Reduced ultra-LMW siloxane, UL certified, electrode coating material	Low viscosity, low hardness	Reduced LMW siloxane, low-temperature curing
Consistency		Low viscosity	Low viscosity	Low viscosity	Low viscosity	Low viscosity	Low viscosity	Low viscosity
Appearance	Color	Straw-colored transparent	See p. 28	See p. 28	See p. 28	Gray	White	Opaque white
Viscosity	Pa⋅s	0.6	2.5	4.5	5	20	4.0	12
Density 23°C	g/cm ³	0.98	1.04	1.03	1.04	1.32	1.00	1.03
Curing conditions, star	ndard cure time	_	_	_	_	_	1h / 120°C	1h / 120°C
Hardness Durome	eter A	20	25	30	40	50	10	29
Tensile strength	MPa	0.5	1.0	1.1	1.5	4.0	0.6	2.9
Elongation at breal	k %	140	200	200	140	180	200	160
Volume resistivity	TΩ·m	60	3	4	90	40	1	10
Dielectric breakdown s	trength*1 kV	25	22	20	20	22	20	25
Dielectric constant	50 Hz	3.0	3.0	2.8	2.8	3.6	3.5	3.1
Dissipation factor	50 Hz	3×10 ⁻³	3×10 ⁻³	3×10 ⁻³	1×10 ⁻³	8.8×10 ⁻³	5×10 ⁻³	1×10 ⁻³
Thermal conductiv	rity W/m·K	0.17	0.21	0.21	_	0.4	_	_
Tack-free time	min	5	5	11	11	6	_	_
Lap shear strength	n MPa	0.3 (aluminum)	0.4 (aluminum)	0.3 (aluminum)	0.5 (aluminum)	0.4 (aluminum)	0.2 (aluminum)	0.8 (aluminum)
LMW content ∑D:	3~D10 ppm	< 300	—*3	< 300	< 300	ΣD3~D20 < 300*2	*3	< 100

^{*1} Measured by 1mm *2 KE3442G is a high-grade product, Σ Dn (n=3~20) < 300 ppm *3 Not a reduced LMW siloxane product LMW: low-molecular-weight

(Not specified values)


■ Thermally conductive types

		One-com	ponent room-tempera	ture cure	01	ne-component heat cu	re	Two-component heat cure
Grade		KE-3493	KE-3466	KE-3467	KE-1862	X-32-2020	KE-1867	KE-1861 (A/B)
Cure type (by-prod	luct gas)	Condensation (acetone)	Condensation cure (acetone)	Condensation cure (acetone)	Addition	Addition	Addition cure	Addition
Brief description		Reduced LMW siloxane product	Reduced LMW siloxane product, UL certified	Reduced LMW siloxane product, UL certified	High viscosity	Reduced LMW siloxane product	Reduced LMW siloxane product, UL certified	Adhesive, thermally conductive
Appearance		Paste	Medium viscosity	High viscosity	High viscosity	High viscosity	Medium viscosity	Medium viscosity
Простипос	Color	See p. 28	White	White	Gray	Gray	Gray	A/B: light gray
Viscosity	Pa⋅s	_	50	100	60	100	60	A: 50 / B: 50
Density 23°C	g/cm ³	1.46	2.80	2.90	2.22	2.82	2.92	2.22
Curing conditions, stan	dard cure time	_	_	_	1h / 120°C	1h / 120°C	1h / 120°C	1h / 120°C
Hardness Durome	eter A	73	88	91	72	78	75	75
Tensile strength	MPa	2.0	3.1	3.6	6.0	2.5	1.2	6.4
Elongation at breal	k %	70	30	30	80	40	70	80
Volume resistivity	TΩ·m	1	2.9	5.9	10	1.0	1.2	10
Dielectric breakdown s	trength*1 kV	35	24	25	25	23	23	25
Dielectric constant	50 Hz	4.2	5.9	4.6	4.0	5.0	6.7	4.0
Dissipation factor	50 Hz	2×10 ⁻³	4.7×10 ⁻³	4.0×10 ⁻³	1.6×10 ⁻³	2.0×10 ⁻³	4.5×10⁻³	1.6×10 ⁻³
Thermal conductiv	rity W/m·K	1.6	1.9	2.4	0.83	1.9	2.5	0.83
Tack-free time	min	1	7	4	_	_	_	5.0 ^{*2}
Lap shear strength	n MPa	0.8 (aluminum)	0.5 (aluminum)	0.5 (aluminum)	1.3 (aluminum)	1.0 (aluminum)	1.0 (alminum)	1.0 (aluminum)
Name of curing ag	ent	_	_	_	_	_	_	_
Blend ratio		_	_	_	_	_	_	100 / 100
LMW content ∑D:	3~D10 ppm	< 300	< 300	< 300	— _{*3}	< 500	< 300	*3

^{*1} Measured by 1mm $\,$ *2 Workable time (23°C : h) $\,$ *3 Not a reduced LMW siloxane product LMW: low-molecular-weight

■ Foams

		Two-component roo	m-temperature cure	
Grade		KE-513 (A/B)	KE-521 (A/B)	
Cure type (by-prod	uct gas)	Condensation (hydrogen)	Addition (hydrogen)	
Brief description		Triple-volume foaming	Triple-volume foaming	
Appearance	Consistency	Low viscosity	Low viscosity	
Арреагансе	Color	A: white / B: black	A: black / B: white	
Viscosity	Pa⋅s	A: 4 / B: 6	A: 8 / B: 3	
Density 23°C	g/cm ³	Approx. 0.5	Approx. 0.5	
Curing conditions, stand	lard cure time	24h / 23°C	24h / 23°C	
Hardness Duromet	ter A	10	14	
Tensile strength	MPa	0.2	0.2	
Elongation at break	%	110	120	
Volume resistivity	TΩ·m	2	4	
Dielectric breakdown st	rength*1 kV	15	15	
Dielectric constant	50 Hz	2.6	2.2	
Dissipation factor	50 Hz	2×10 ⁻³	5×10 ⁻³	
Thermal conductivi	ty W/m·K	0.22	0.23	
Workable time 23°	C h	0.2	0.15	
Blend ratio		100:10	100:100	

■ Oil- and solvent-resistant types (fluorosilicone)

		One-component room-temperature cure		One-component heat cure		
Grade		FE-123	FE-61	X-32-1619	FE-57	
Cure type (by-pro	duct gas)	Condensation (acetic acid)	Addition	Addition	Addition	
Brief description		Oil- and solvent-resistant	Oil- and solvent-resistant	Oil- and solvent-resistant	Oil- and solvent-resistant ge	
Annograpos	Consistency	Paste	Medium viscosity	Low viscosity	Low viscosity	
Appearance	Color	See p. 28	Light gray	Light gray	Light brown	
Viscosity Pa-s		_	60	20	2	
Density 23°C g/cm ³		1.34	1.43	1.46	1.28	
Curing conditions, standard cure time		_	1h / 120°C 1h / 120°C		2h / 125°C	
Hardness Durometer A		40	25	25	_	
Tensile strength	MPa	2.5	1.7	1.1	_	
Elongation at brea	k %	250	170	130	_	
Volume resistivity	TΩ·m	0.1	2.0	2.0	20	
Dielectric breakdown	strength*1 kV	17	18	18	_	
Dielectric constan	t 50 Hz	8.0	6.5	6.5	7.0	
Dissipation factor	50 Hz	3×10 ⁻²	1×10 ⁻²	1×10 ⁻²	1×10 ⁻²	
Thermal conductiv	tivity W/m·K 0.17		_	_	_	
Tack-free time	min	5	_	_	_	
Lap shear strength MPa		1.0 (aluminum)	0.6 (aluminum)	0.2 (aluminum)	_	

^{*1} Measured by 1mm (Not specified values)

■ Primers

Grade	RTV type compatibility	e compatibility		Drying time 23°C (min)	Usage amount (g/m²) Pacl		Packaging		UN No.
Primer C	One-component condensation cure type	Glass, enamel, tile, porcelain, metal, plastic	Straw-colored transparent liquid, volatile oil	15	35	100g (bottle)	250g (square can)	1kg (can)	UN-1133
Primer MT	One-component condensation cure type	Stone, mortar, slate, concrete	Colorless transparent liquid, toluene, isopropanol	30	200	100g (bottle)	250g (square can)	1kg (can)	UN-1866
Primer T	One- and two-component condensation cure types	Plastic	Colorless transparent liquid, toluene, isopropanol	15	50	100g (bottle)	250g (square can)	1kg (can)	UN-1866
Primer D2	One-component condensation cure type	Fluorine paint, PVC, plastic	Colorless transparent liquid, ethanol	30	100	100g (bottle)	250g (square can)		UN-1133
Primer U	One-component condensation cure type	Plastic, metal	Colorless transparent liquid, volatile oil	15	30	100g (bottle)	250g (square can)	1kg (can)	UN-1133
Primer S	One- and two-component condensation cure types	Metals	Colorless transparent liquid	30	35	100g (bottle)	250g (square can)	1kg (can)	UN-1866
Primer No. 4	One- and two-component addition cure types	Plastic, metal	Aliphatic hydrocarbon	40	35	100g (bottle)	_	1kg (can)	UN-1133

Data: primer selection standards – p. 15; preparation and usage – p. 30 $\,$

■ Curing agents

Grade	Compatible base resin	Consistency and appearance	Pack	aging	UN No.
CAT-103	KE-103	Colorless transparent liquid	50g (bottle)	1kg (can)	Not applicable
CAT-RG	KE-106	Colorless transparent liquid	100g (bottle)	1kg (can)	Not applicable
CAT-108	KE-108	Colorless or straw-colored liquid	50g (bottle)	1kg (can)	UN-3802
CAT-118-BL	KE-118	Blue, transparent liquid	50g (bottle)	1kg (can)	UN-1993
CAT-RC	KE-66	Colorless transparent liquid	50g (bottle)	1kg (can)	UN-3802
CAT-RP	KE-119	Light blue liquid	100g (bottle)	1kg (can)	UN-3802
CX-200	KE-200	Blue liquid	100g (bottle)	1kg (can)	Not applicable
KE-1800B	KE-1800·KE-1801·KE-1802	Colorless transparent	100g (bottle)	1kg (can)	Not applicable
KE-1800C	KE-1800·KE-1801·KE-1802	Colorless or straw-colored	25g (bottle)	_	UN-1866

■ Diluents, Additives, and Coatings

	Dilu	ient			Coating		
Category	Thir	nner	Cure acc	celerator	Cure re	tardant	Agent to prevent curing inhibition
Grade	RTV Thinner	KE-1204 Thinner	CAT-RS	X-93-405	Wetter No. 5	Control Agent No.6-10	Barrier Coat No.6
Characteristics	Colorless transparent liquid	Colorless transparent liquid	Straw- or fawn-colored liquid	Straw-colored liquid	Colorless transparent liquid	Colorless transparent liquid	Colorless transparent liquid
Compatible base resin	Two-component condensation cure type	Two-component addition cure type	Two-component condensation cure type	Two-component addition cure type	Two-component condensation cure type	Two-component addition cure type	Two-component addition cure type
Usage amount	As needed per application (<10%)	1~3%	0.1~0.5%	Up to 1%	1~2%	Up to 1%	As needed
Effect	Can be used to adjust viscosity, but will also change general physical properties.	Can be used to adjust viscosity if used in the proportions shown above.	Greatly reduces cure time. Please note that workable time will also decrease proportionately.	Cure time can be reduced by half, but workable time will also be halved.	Workable time and cure time can be extended by approx. 2 times.	Workable time and cure time can be extended by approx. 2.5 times.	Application to the base form can prevent the incidence of curing inhibition and prevent the mutual bonding of RTV rubbers.
Precautions	Excessive amounts physical properties. 1204 Thinner accurate		Additives for condensation With cure accelerators and standard amount.	Cannot be used as an adhesive primer.			
Packaging	1 kg (can)	1 kg (can)	100g (bottle)	100g (bottle)	100g (bottle)	100g (bottle)	100g (bottle)
Packaging	i ky (bali)	i ky (bali)	1kg (can)	1kg (can)	1kg (can)	1kg (can)	1kg (can)
UN No.	NON	NON	NON	NON	NON	NON	UN-1866

Data: Relationship of quantity of added diluent and various physical properties \cdots p. 14 Barrier Coat No. 6 \cdots p. 15

■ UL listing General silicone rubbers correspond to UL 94HB, but the following products are UL registered.

Approved products [File no. E48923]

		Reaction type	UL list item					
	Shin-Etsu grade	(by-product gas)	Registered product name	Certified color	Level			
		(-) ()	Material Dsg	Color	Flame Class (Min. Thk)			
	KE-3494	Condensation (acetone)	KE-3494	BK, GY	94V-0 {1.5 mm} 94V-1 {0.75 mm}			
	KE-3490	Condensation (acetone)	KE-3490	BK, GY	94V-0 {3.0 mm} 94V-1 {0.75 mm}			
	KE-3467	Condensation (acetone)	KE-3467	WT	94V-0 {2.0 - 2.2 mm} 94V-1 {0.8 mm}			
	KE-3466	Condensation (acetone)	KE-3466	WT	94V-1 {0.8 - 0.9 mm}			
	KE-3424G	Condensation (acetone)	KE-3424G	GY	94V-1 {2.0 mm}			
One-component room-temperature	KE-3497T	Condensation (acetone)	KE-3497T	WT	94HB {0.75 mm}			
cure	KE-3497W	Condensation (acetone)	KE-3497W	WT	94HB {0.75 mm}			
	KE-347	Condensation (acetone)	KE-347	CL, WT	94HB {0.75 mm}			
	KE-4890	Condensation (alcohol)	KE-4890	ALL*	94V-0 {0.75 mm}			
	KE-40RTV	Condensation (oxime)	KE-40RTV	WT, GY	94V-0 {0.75 mm}			
	KE-45	Condensation (oxime)	KE45&	ALL*	94HB {1.5 mm}			
	KE-441	Condensation (oxime)	KE-441	WT, RD, TL	94HB {1.0 mm}			
One-component	KE-1831	Addition	KE-1831	BK	94V-0 {0.75 mm}			
heat cure	KE-1867	Addition	KE-1867	GY	94V-0 {0.8-2.2 mm}			
Two-component room-temperature	KE-200	Condensation (acetone)	KE-200	BL	94HB {1.5 mm}			
	KE-1204 (A/B) KE-1204 (AL/BL)	Addition Addition	KE-1204-LTV	BN	94V-0 {0.89 mm}			
Two-component	KE-1281 (A/B)	Addition	KE-1281	NC	94V-1 {0.8 mm}			
heat cure	KE-1800	Addition	KE-1800	WT	94V-0 {3.0 mm} 94V-1 {1.5 mm}			
	KE-1802	Addition	KE-1802	BK	94V-0 {3.0 mm} 94V-1 {0.75 mm}			

Please refer to "Standard for Safety: UL94" (Test for Flammability of Plastic Materials for Parts in Devices and Appliances) by Underwriters Laboratories Inc.® for UL94 Flammability Classification Standards.

Please refer to "Plastics Recognized Component Directory" by Underwriters Laboratories Inc.® for approved products [File no. E48923].

Flame resistance testing left: silicone rubber / right: organic rubber

Figures within brackets () indicate minimum thickness.

 $^{^{\}star}$ For product colors listed as ALL, refer to packaging and colors – p. 28, 29

Packaging and Colors

■ One-component RTV rubber (room-temperature cure type)

h			100 g X	20 tubes				;	330 mℓ × 2	0 cartridge	:S		1 kg ×	10 cans	
Indicated color	W	Т	В	G	R	Other	W	Т	В	G	R	Other	W	Т	UN No.
KE-3417			0						0						UN-1993
KE-3418			0						0						Not applicab
KE-3423		0												0	UN-1133
KE-3424G				O *1						0					UN-1993
KE-3427				0						0					Not applicab
KE-3428				0						0					Not applicab
KE-3466	○ *6						0								Not applicab
KE-3467	○ *6						0								Not applicab
KE-347*	0	0	0				0	0	0						UN-1993
KE-3475*	0	0					0	0					0	0	UN-1993
KE-3479*		0						0							UN-1993
KE-348*	0	0	0				0	0	0						Not applicab
KE-3490				0						0					Not applicab
KE-3491			0						0						Not applicab
KE-3492						○ *5 G B									Not applicab
KE-3493	O *2						0								Not applicab
KE-3494				0						0					UN-1993
KE-3495*	0	0					0	0					0		Not applicab
KE-3497*	0	0					0	0							UN-1993
KE-3498*	0						0								Not applicab
KE-40RTV*	O *4			O *4			0			0					Not applicab
KE-41*	0	0					0	0							Not applicab
KE-42*	0	0	0				0	0	0	0		O A L			Not applicab
KE-44*	0	0	0	0			0	0	0	0					Not applicab
KE-441*	0	0			0		0	0			0				Not applicab
KE-445*	0						0	0	0		0			0	Not applicab
KE-45*	0	0	0		0	O	0	0	0	0	0	O Y W			Not applicab
KE-45S*													0	0	UN-1866
KE-4890*	○ *3			O *3			0			0					Not applicab
KE-4895*	0	0					0	0							Not applicab
KE-4896*	0	0					0	0							Not applicab
KE-4897*	0	0					0	0							Not applicab
KE-4898*	0	0					0	0							Not applicab
FE-123*	O *1	O *1					0								Not applicab

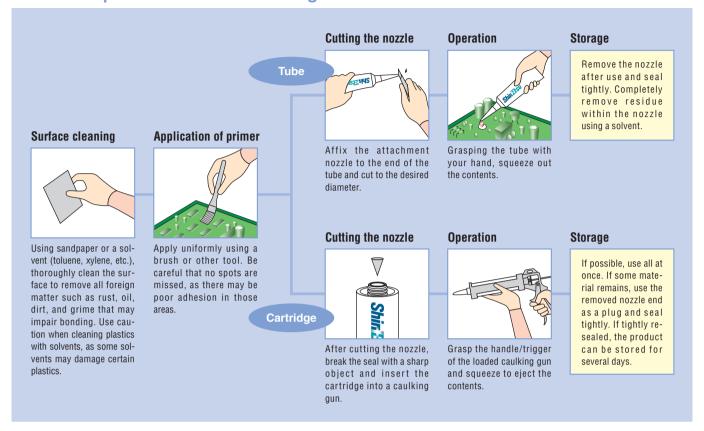
Example) Tube : KE-45W, 100 g \times 20 tubes Cartridge: KE-45-W, 330 m ℓ \times 20 cartridges

■ One-component RTV rubber (heat cure type)

Grade	100 g × 20 tubes	330 mℓ × 20 cartridges	1 kg × 10 cans	UN No.
KE-1056			: transparent	Not applicable
KE-1151			: translucent	Not applicable
KE-1820	: translucent	: translucent	: translucent	Not applicable
KE-1825	○: translucent	: translucent	○: translucent	Not applicable
KE-1830	○ : light gray	○: light gray		Not applicable
KE-1831	○: black	○: black		Not applicable
KE-1833	○: reddish brown	○: black / reddish brown	○: reddish brown	Not applicable
KE-1842	○: white		○: white	Not applicable
KE-1862	○*1: gray		○: gray	Not applicable
KE-1867	○ ^{*1} : gray		○ : gray	Not applicable
FE-57			○: light brown	Not applicable
FE-61	○ ^{*2} : light gray		: light gray	Not applicable
KE-1884	○ : light gray		○: light gray	Not applicable
X-32-1619	○ ^{*2} : light gray			Not applicable
X-32-1947	○ : light gray		○: light gray	Not applicable
X-32-1964	: white		○: white	Not applicable
X-32-2020	○*¹: gray		○: gray	Not applicable

^{*1 200} g × 20 tubes

■ Two-component RTV rubber (room-temperature cure and heat cure types)


Grade	1 kg x 10 cans	16 kg can	20 kg can	UN No.
KE-66*	: light gray		: light gray	Not applicable
KE-103*	: transparent	: transparent		Not applicable
KE-1031 (A/B)	: transparent	: transparent		Not applicable
KE-1051J (A/B)	: transparent	: transparent		Not applicable
KE-1052 (A/B)	: transparent	: transparent		Not applicable
KE-106*	: transparent	: transparent (18 kg)		Not applicable
KE-108*	○: transparent	○: transparent		Not applicable
KE-109 (A/B)	○: transparent	○: transparent		Not applicable
KE-118 [*]	○: light gray		: light gray	Not applicable
KE-119*	: reddish brown		○: reddish brown	Not applicable
KE-1204 (A/B)	: Agent A: reddish brown / Agent B: white		: Agent A: reddish brown / Agent B: white	Not applicable
KE-1204 (AL/BL)	: Agent A: reddish brown / Agent B: white		: Agent A: reddish brown / Agent B: white	Not applicable
KE-1281 (A/B)	: Agent A: black / Agent B: light gray		: Agent A: black / Agent B: light gray	Not applicable
KE-1800 (A/B/C)*	: Agent A: white		: Agent A: white	Agent A / B: NON /Agent C:UN-1866
KE-1801 (A/B/C)*	: Agent A: white		: Agent A: white	Agent A / B: NON /Agent C:UN-1866
KE-1802 (A/B/C)*	: Agent A: black		: Agent A: black	Agent A / B: NON /Agent C:UN-1866
KE-1800T (A/B)	: Agents A/B: transparent		: Agents A/B: transparent	Not applicable
KE-1861 (A/B)	: Agent A: white: transparent			Not applicable
KE-200*	: transparent	: transparent (18 kg)		Not applicable
KE-513 (A/B)	: Agent A: black / Agent B: white		: Agent A: black / Agent B: white	Not applicable
KE-521 (A/B)	: Agent A: black / Agent B: white		: Agent A: black / Agent B: white	Not applicable

 $^{^{\}star}$ For information regarding curing agents, please refer to p. 26.

^{*2 130} g × 20 tubes

Directions for Usage

■ One-component RTV rubber – Usage

■ Two-component RTV rubber – Usage

Before using

Two-component RTV rubber is separated into a primary agent (base resin) and a curing agent, and the curing reaction begins when the two are blended in the prescribed amounts. To some extent, the workable time can be controlled by changing the type and/or amount of the curing agent, or by adjusting the temperature, but the work should be done as quickly as possible.


Containers to be used for work should be cleaned prior to use.

Pre-blending agitation

The filling agent may have settled to the bottom of the container, so be sure to stir thoroughly prior to use.

Measurement

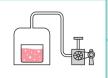
Weigh out both the primary agent and curing agent.

Blending and stirring

Blend the primary and curing agents and stir until color is uniform.

Storage

Be sure to seal the product tightly before


After use, thoroughly clean containers and tools used for mixing and agitation using a solvent or other cleaner.

Application

Pour into the area to be filled immediately after agitation and deaeration.

Deaeration

Handling Precautions

Handling precautions

- 1. One-component condensation cure RTV rubber reacts with moisture in the air and begins to cure at the surface. Consequently, the cure speed will vary according to the temperature and humidity of the use environment, but these rubbers do not exhibit good deep-curing and are therefore not suitable for wide-area surface bonding. In addition, please note that if humidity exceeds 100% and water droplets form on the curing rubber, a hydrolytic reaction will precede the crosslinking cure reaction, which will reduce the strength of the post-cured rubber and remain surface tackiness. (See p. 6)
- 2. Some of the one-component condensation cure RTV rubbers, such as the acetic acid and oxime types, may corrode metal. The acetic acid type may cause rust, and under sealed conditions the oxime type may corrode copper metals. Conduct a test using a small sample to determine whether the product is suitable for the intended application.
- The electrical insulative properties will temporarily decline during the curing process. But in nearly all cases, the rubber will exhibit its inherent electrical insulative properties once completely cured.
- **4.** Please note that in some cases, the rubber may not cure if it comes in contact with flux or certain other materials.
- Do not use condensation cure products in a completely enclosed space.
- 6. If addition cure products become mixed with or come into contact with curing inhibitors (e.g. sulfur, phosphorus, nitrogen compounds, water, organometallic salts, etc.), a defective cure may result, so please use caution. For information about curing inhibitors, see p. 15.
- **7.** Addition cure products should not be used in humid conditions, as this may cause defective curing and poor adhesion.
- **8.** With addition-cure products, please note that minute quantities of hydrogen gas are released during the curing process.
- **9.** One-component condensation cure RTV rubber may yellow over time, but this does not negatively affect the characteristic properties.

Usage

- Completely remove water, oil, dirt, and contaminants from the surface of the adherend.
- 2. For certain substrates, use a primer as needed.

 (For information about primer types, see p. 15.)
- 3. For products that will become tack-free in a short time, surface treatment should be finished as quickly as possible using a spatula or similar tool.

- **4.** When using two-component RTV products, be sure to agitate, blend, and deaerate thoroughly. Failure to do so may degrade the characteristics of the rubber.
- 5. When using an air gun, be sure to set the pressure at a safe and proper level. Pressure should generally not exceed 0.2-0.3 MPa.

Safety and hygiene

- 1. Be sure to provide adequate ventilation when using condensation cure RTV rubber. During curing, the following gases are generated, depending on the cure type: acetic acid type acetic acid; alcohol type methanol; oxime neutral type methyl ethyl ketoxime (MEKO); acetone type acetone. If you experience any unpleasant symptoms please move to an area with fresh air.
- 2. Uncured RTV rubber may irritate skin and mucous membranes, so avoid eye contact and prolonged skin contact. In case of accidental eye contact, flush with water for at least 15 minutes and see a physician. In case of skin contact, immediately wipe off with a dry cloth and wash with soapy water. Contact lens wearers should exercise adequate caution; if uncured RTV rubber enters the eye, the contact lens may become bonded to the eye.
- 3. When using, be careful not to rub the eyes with the hands. Please take appropriate precautions such as wearing safety glasses.
- 4. When exposed to high-temperature conditions exceeding 150°C, FE-123, FE-61, FE-57, and X-32-1619 break down and release trace amounts of a poisonous gas, trifluoropropionaldehyde. When using in high-temperature conditions, be sure to provide adequate ventilation.
- 5. Primers and some RTV silicone rubbers and curing agents are classified as hazardous materials under the laws of certain countries. In such cases, the laws must be followed regarding storage, labeling, and handling.
- 6. Keep out of reach of children.
- **7.** Please read the Material Safety Data Sheet (MSDS) before use. MSDS can be obtained from our Sales Department.

Storage precautions

- 1. Store between 1°C~30°C, out of direct sunlight. Some products must be stored between 1°C~25°C. Products with "refrigeration required" on the label must be stored below 10°C.
- 2. With cartridges, as a general rule it is best to completely use up the product once the cartridge has been opened. If any remains, be sure to seal completely.

Silicone Division Sales and Marketing Department IV

6-1, Ohtemachi 2-chome, Chiyoda-ku, Tokyo, Japan Phone: +81-(0)3-3246-5152 Fax: +81-(0)3-3246-5362

Shin-Etsu Silicones of America, Inc.

1150 Damar Drive, Akron, OH 44305, U.S.A. Phone: +1-330-630-9860 Fax: +1-330-630-9855

Shin-Etsu Silicones Europe B. V.

Bolderweg 32, 1332 AV, Almere, The Netherlands Phone: +31-(0)36-5493170 Fax: +31-(0)36-5326459

Shin-Etsu Silicone Taiwan Co., Ltd.

Hung Kuo Bldg. 11F-D, No. 167, Tun Hua N. Rd., Taipei, 10549 Taiwan, R.O.C.

Phone: +886-(0)2-2715-0055 Fax: +886-(0)2-2715-0066

Shin-Etsu Silicone Korea Co., Ltd.

Danam Bldg., 9F, 120, Namdaemunno5(o)-ga, Jung-gu, Seoul 100-704, Korea

Phone: +82-(0)2-775-9691 Fax: +82-(0)2-775-9690

- The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.
- Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use.
 Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.
- The silicone products described herein have been designed, manufactured and developed solely for general industrial use only; such silicone products are not designed for, intended for use as, or suitable for, medical, surgical or other particular purposes. Users have the sole responsibility and obligation to determine the suitability of the silicone products described herein for any application, to make preliminary tests, and to confirm the safety of such products for their use.
- Users must never use the silicone products described herein for the purpose of implantation into the human body and/or injection into humans.
- Users are solely responsible for exporting or importing the silicone products described herein, and complying with all applicable laws, regulations, and rules relating to the use of such products. Shin-Etsu recommends checking each pertinent country's laws, regulations, and rules in advance, when exporting or importing, and before using, the products.
- Please contact Shin-Etsu before reproducing any part of this catalog.

Copyright belongs to Shin-Etsu Chemical Co., Ltd.

Shin-Etsu Singapore Pte. Ltd.

4 Shenton Way, #10-03/06, SGX Centre **I** , Singapore 068807 Phone: +65-6743-7277 Fax: +65-6743-7477

Shin-Etsu Silicones (Thailand) Ltd.

7th Floor, Harindhorn Tower, 54 North Sathorn Road, Bangkok 10500, Thailand

Phone: +66-(0)2-632-2941 Fax: +66-(0)2-632-2945

Shin-Etsu Silicone International Trading (Shanghai) Co., Ltd.

29F Junyao International Plaza, No.789, Zhao Jia Bang Road, Shanghai

Phone: +86-(0)21-6443-5550 Fax: +86-(0)21-6443-5868

The Development and Manufacture of Shin-Etsu Silicones are based on the following registered international quality and environmental management standards.

 Gunma Complex
 ISO 9001
 ISO 14001

 (JC0A-0004
 JC0A-E-0002)

 Naoetsu Plant
 ISO 9001
 ISO 14001

 (JC0A-0018
 JC0A-E-0064)

 Takefu Plant
 ISO 9001
 ISO 14001

 (J0A-0479
 J0A-FM0298)

http://www.silicone.jp/